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What we've seen so far

» we defined Distributed Data Parallelism
» we saw that Apache Spark implements this model
» we got a feel for what latency means to distributed systems



What we've seen so far

» we defined Distributed Data Parallelism
» we saw that Apache Spark implements this model
» we got a feel for what latency means to distributed systems

Spark’s Programming Model
» We saw that, at a glance, Spark looks like Scala collections
» However, interally, Spark behaves differently than Scala collections

» Spark uses laziness to save time and memory

We saw transformations and actions

We saw caching and persistence (i.e., cache in memory, save time!)
We saw how the cluster topology comes into the programming model
We got a sampling of Spark’s key-value pairs (Pair RDDs)
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Today..

1. Reduction operations in Spark vs Scala collections

2. More on Pair RDDs (key-value pairs)

3. We'll get a glimpse of what “shuffling” is, and why it hits
performance (latency)



Reduction Operations

Recall what we learned earlier in the course about foldLeft vs fold.

Which of these two were parallelizable?
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Recall what we learned earlier in the course about foldLeft vs fold.

Which of these two were parallelizable?

foldLeft is not parallelizable.

def foldLeft[Bl(z: B)(f: (B, A) => B): B
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Reduction Operations

foldLeft is not parallelizable.
def foldLeft[B](z: B)(f: (B, A) =>B): B

Being able to change the result type from A to B forces us to have to
execute foldLeft sequentially from left to right.

Concretely, given:

val xs = List(1, 2, 3)

val res = xs.foldLeft(””)((str: String, i: Int) => str + i)

What happens if we try to break this collection in two and parallelize?

(Example on whiteboard)



Reduction Operations: Fold

fold enables us to parallelize things, but it restricts us to always returning
the same type.

def fold(z: A)(f: (A, A) => A): A

A
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It enables us to parallelize using a single function f by enabling us
to build parallelizable reduce trees.




Reduction Operations: Fold

It enables us to parallelize using a single function f by enabling us
to build parallelizable reduce trees.

def fold(z: A)(f: (A, A) => A): A

A



Reduction Operations: Aggregate

Does anyone remember what aggregate does?
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Reduction Operations: Aggregate

Does anyone remember what aggregate does?

aggregate[B](z: => B)(seqop: (B, A) => B, combop: (B, B) => B): B

aggregate is said to be general because it gets you the best of both worlds.

Properties of aggregate

1. Parallelizable.
2. Possible to change the return type.



Reduction Operations: Aggregate

aggregate[B](z: => B)(seqop: (B, A) => B, combop: (B, B) => B): B
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Aggregate lets you still do sequential-style folds in chunks which change
the result type. Additionally requiring the combop function enables building
one of these nice reduce trees that we saw is possible with fold to
combine these chunks in parallel.



Reduction Operations on RDDs

Scala collections: Spark:

fold fold
foldLeft/foldRight foldLeft foldRight
reduce reduce

aggregate aggregate
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means that if you have to change the return type of your reduction
operation, your only choice is to use aggregate.
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Reduction Operations on RDDs

Scala collections: Spark:

fold fold
foldLeft/foldRight foldLeft foldRight
reduce reduce

aggregate aggregate

Spark doesn’t even give you the option to use foldLeft/foldRight. Which
means that if you have to change the return type of your reduction
operation, your only choice is to use aggregate.

Question: Why not still have a serial foldLeft/foldRight on Spark?

Doing things serially across a cluster is actually difficult. Lots of
synchronization. Doesn’t make a lot of sense.



RDD Reduction Operations: Aggregate

In Spark, aggregate is a more desirable reduction operator a majority of
the time. Why do you think that's the case?
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As you will realize from experimenting with our Spark cluster, much of the
time when working with large-scale data, our goal is to project down
from larger/more complex data types.



RDD Reduction Operations: Aggregate

In Spark, aggregate is a more desirable reduction operator a majority of
the time. Why do you think that's the case?

As you will realize from experimenting with our Spark cluster, much of the
time when working with large-scale data, our goal is to project down
from larger/more complex data types.

Example:

case class WikipediaPage(
title: String,
redirectTitle: String,
timestamp: String,
lastContributorUsername: String,
text: String)



RDD Reduction Operations: Aggregate

As you will realize from experimenting with our Spark cluster, much of the
time when working with large-scale data, our goal is to project down
from larger/more complex data types.

Example:

case class WikipediaPage(
title: String,
redirectTitle: String,
timestamp: String,
lastContributorUsername: String,
text: String)

| might only care about title and timestamp, for example. In this case,
it'd save a lot of time/memory to not have to carry around the full-text of
each article (text) in our accumulator!



Pair RDDs (Key-Value Pairs)

Key-value pairs are known as Pair RDDs in Spark.

When an RDD is created with a pair as its element type, Spark
automatically adds a number of extra useful additional methods (extension
methods) for such pairs.



Pair RDDs (Key-Value Pairs)

Creating a Pair RDD
Pair RDDs are most often created from already-existing non-pair RDDs,
for example by using the map operation on RDDs:

val rdd: RDD[WikipediaPage] = ...

val pairRdd = 2?7



Pair RDDs (Key-Value Pairs)

Creating a Pair RDD
Pair RDDs are most often created from already-existing non-pair RDDs,
for example by using the map operation on RDDs:

val rdd: RDD[WikipediaPage] = ...

// Has type: org.apache.spark.rdd.RDD[(String, String)]
val pairRdd = rdd.map(page => (page.title, page.text))

Once created, you can now use transformations specific to key-value pairs
such as reduceByKey, groupByKey, and join



Some interesting Pair RDDs operations

Transformations

> groupByKey

» reduceByKey

> join

» leftOuterJoin/rightOuterJoin

Action

» countByKey



Pair RDD Transformation: groupByKey

Recall groupBy from Scala collections. groupByKey can be thought of as a
groupBy on Pair RDDs that is specialized on grouping all values that have
the same key. As a result, it takes no argument.

def groupByKey(): RDD[ (K, Iterable[V])]
Example:
case class Event(organizer: String, name: String, budget: Int)

val eventsRdd = sc.parallelize(...)
.map(event => (event.organizer, event.budget))

val groupedRdd = eventsRdd.groupByKey ()

Here the key is organizer. What does this call do?



Pair RDD Transformation: groupByKey

Example:

case class Event(organizer: String, name: String, budget: Int)
val eventsRdd = sc.parallelize(...)
.map(event => (event.organizer, event.budget))

val groupedRdd = eventsRdd.groupByKey ()
// TRICK QUESTION! As-is, it ”does” nothing. It returns an unevaluated RDD

groupedRdd.collect().foreach(println)

// (Prime Sound,CompactBuffer(42000))

// (Sportorg,CompactBuffer(23000, 12000, 1400))
/] ...

(Note: all code available in “exercisel” notebook.)



Pair RDD Transformation: reduceByKey

Conceptually, reduceByKey can be thought of as a combination of
groupByKey and reduce-ing on all the values per key. It's more efficient
though, than using each separately. (We'll see why later.)

def reduceByKey(func: (V, V) => V): RDD[(K, V)]

Example: Let's use eventsRdd from the previous example to calculate the
total budget per organizer of all of their organized events.

case class Event(organizer: String, name: String, budget: Int)

val eventsRdd = sc.parallelize(...)
.map(event => (event.organizer, event.budget))

val budgetsRdd = ...



Pair RDD Transformation: reduceByKey

Example: Let's use eventsRdd from the previous example to calculate the
total budget per organizer of all of their organized events.

case class Event(organizer: String, name: String, budget: Int)
val eventsRdd = sc.parallelize(...)
.map(event => (event.organizer, event.budget))

val budgetsRdd = eventsRdd.reduceByKey(_+_)

reducedRdd.collect().foreach(println)
// (Prime Sound,42000)

// (Sportorg,36400)

// (Innotech,320000)

// (Association Balélec,50000)

(Note: all code available in “exercisel” notebook.)



Pair RDD Transformation: mapValues and Action: countByKey

mapValues (def mapValues[UI(f: (V) U): RDDL(K, U)1) can be thought
of as a short-hand for:

rdd.map { case (x, y): (x, func(y))}

That is, it simply applies a function to only the values in a Pair RDD.

countByKey (def countByKey(): Map[K, Longl) simply counts the number
of elements per key in a Pair RDD, returning a normal Scala Map
(remember, it's an action!) mapping from keys to counts.



Pair RDD Transformation: mapValues and Action: countByKey

Example: we can use each of these operations to compute the average budget
per event organizer.

// Calculate a pair (as a key’s value) containing (budget, #events)
val intermediate =
eventsRdd.mapValues(b => (b, 1))
.reduceByKey((v1, v2) => (v1._1 + v2._1, v1._2 + v2._2))
// intermediate: RDD[(String, (Int, Int))]

val avgBudgets = 2?77



Pair RDD Transformation: mapValues and Action: countByKey

Example: we can use each of these operations to compute the average budget
per event organizer.

// Calculate a pair (as a key’s value) containing (budget, #events)
val intermediate =
eventsRdd.mapValues(b => (b, 1))
.reduceByKey((v1, v2) => (v1._1 + v2._1, v1._2 + v2._2))
// intermediate: RDD[(String, (Int, Int))]

val avgBudgets = intermediate.mapValues {
case (budget, numberOfEvents) => budget / numberOfEvents
}
avgBudgets.collect().foreach(println)
// (Prime Sound, 42000)
// (Sportorg,12133)
// (Innotech,106666)
// (Association Balélec,50000)



Joins

Joins are another sort of transformation on Pair RDDs. They're used to
combine multiple datasets They are one of the most commonly-used
operations on Pair RDDs!

There are two kinds of joins:

» Inner joins (join)
» Outer joins (leftOuterJoin/rightOuterJoin)

The key difference between the two is what happens to the keys when
both RDDs don't contain the same key.

For example, if | were to join two RDDs containing different customerIDs
(the key), the difference between inner/outer joins is what happens to
customers whose |IDs don't exist in both RDDs.



Inner Joins (join)

Inner joins return a new RDD containing combined pairs whose keys are
present in both input RDDs.

def join[W](other: RDD[(K, W)JI): RDD[(K, (V, W))]

Example: Let's pretend the CFF has two datasets. One RDD representing
customers and their subscriptions (abos), and another representing
customers and cities they frequently travel to (locations). (E.g., gathered
from CFF smartphone app.)

How do we combine only customers that have a subscription and where
there is location info?

val abos = ... // RDD[(Int, (String, Abonnement))]
val locations = ... // RDD[(Int, String)]

val trackedCustomers = ?7??



Inner Joins (join)

Example: Let's pretend the CFF has two datasets. One RDD representing
customers and their subscriptions (abos), and another representing
customers and cities they frequently travel to (locations). (E.g., gathered
from CFF smartphone app.)

How do we combine only customers that have a subscription and where

there is location info?

val abos = ... // RDD[L(Int, (String, Abonnement))]
val locations = ... // RDD[(Int, String)]

val trackedCustomers = abos.join(locations)
// trackedCustomers: RDD[(Int, ((String, Abonnement), String))]



Inner Joins (join)

Example continued with concrete data:

val as = List((101, (”Ruetli”, AG)), (102, (”Brelaz”, DemiTarif)),
(103, (”Gress”, DemiTarifVisa)), (104, (”Schatten”, DemiTarif)))
val abos = sc.parallelize(as)

val 1s = List((101, ”Bern”), (101, ”Thun”), (102, ”Lausanne”), (102, ”Geneve”),
(102, ”Nyon”), (1@3, ”Zurich”), (103, ”St-Gallen”), (103, ”Chur”))
vals locations = sc.parallelize(ls)

val trackedCustomers = abos.join(locations)
// trackedCustomers: RDD[(Int, ((String, Abonnement), String))]



Inner Joins (join)

Example continued with concrete data:

trackedCustomers.collect().foreach(println)

/7
/7
/7
/7
/7
/7
/7
/7

(101, ((Ruetli,AG),Bern))

(101, ((Ruetli,AG),Thun))

(102, ((Brelaz,DemiTarif),Nyon))

(102, ((Brelaz,DemiTarif),Lausanne))
(102, ((Brelaz,DemiTarif),Geneve))

(103, ((Gress,DemiTarifVisa),St-Gallen))
(103, ((Gress,DemiTarifVisa),Chur))
(103, ((Gress,DemiTarifVisa),Zurich))

What happened to customer 1047



Inner Joins (join)

Example continued with concrete data:

trackedCustomers.collect().foreach(println)
// (101, ((Ruetli,AG),Bern))

// (101, ((Ruetli,AG),Thun))

// (102, ((Brelaz,DemiTarif),Nyon))

// (102, ((Brelaz,DemiTarif),Lausanne))

// (102, ((Brelaz,DemiTarif),Geneve))

// (103, ((Gress,DemiTarifVisa),St-Gallen))
// (103, ((Gress,DemiTarifVisa),Chur))

// (103, ((Gress,DemiTarifVisa),Zurich))

What happened to customer 1047

Customer 104 does not occur in the result, because there is no location
data for this customer Remember, inner joins require keys to occur in both
source RDDs (i.e., we must have location info).



Outer Joins (leftOuterJoin, rightOuterJoin)

Outer joins return a new RDD containing combined pairs whose keys don’t have
to be present in both input RDDs.

Outer joins are particularly useful for customizing how the resulting joined RDD
deals with missing keys. With outer joins, we can decide which RDD’s keys are
most essential to keep—the left, or the right RDD in the join expression.

def leftOuterJoin[W](other: RDD[(K, W)1): RDD[(K, (V, Option[W]))]
def rightOuterJoin[W](other: RDD[(K, W)J1): RDD[(K, (Option[V], W))]

(Notice the insertion and position of the Option!)

Example: Let's assume the CFF wants to know for which subscribers the CFF
has managed to collect location information. E.g., it's possible that someone has
a demi-tarif, but doesn't use the CFF app and only pays cash for tickets.

Which join do we use?



Outer Joins (leftOuterJoin, rightOuterJoin)

Example: Let's assume the CFF wants to know for which subscribers the
CFF has managed to collect location information. E.g., it's possible that
someone has a demi-tarif, but doesn’t use the CFF app and only pays cash
for tickets.

Which join do we use?

val abosWithOptionallocations = ??7?



Outer Joins (leftOuterJoin, rightOuterJoin)

Example: Let's assume the CFF wants to know for which subscribers the
CFF has managed to collect location information. E.g., it's possible that
someone has a demi-tarif, but doesn’t use the CFF app and only pays cash
for tickets.

Which join do we use?

val abosWithOptionallocations = abos.leftOuterJoin(locations)
// abosWithOptionallLocations: RDD[(Int, ((String, Abonnement), Option[Stringl))]



Outer Joins (leftOuterJoin, rightOuterJoin)

Example continued with concrete data:

val abosWithOptionallLocations = abos.leftOuterJoin(locations)
abosWithOptionallLocations.collect().foreach(println)
// (101, ((Ruetli,AG),Some(Thun)))

// (101, ((Ruetli,AG),Some(Bern)))

// (102, ((Brelaz,DemiTarif’),Some(Geneve)))

// (102, ((Brelaz,DemiTarif),Some(Nyon)))

// (102, ((Brelaz,DemiTarif),Some(Lausanne)))

// (103, ((Gress,DemiTarifVisa),Some(Zurich)))

// (103, ((Gress,DemiTarifVisa),Some(St-Gallen)))

// (103, ((Gress,DemiTarifVisa), Some(Chur)))

// (104, ((Schatten,DemiTarif),None))

Since we use a leftOuterJoin, keys are guaranteed to occur in the left source
RDD. Therefore, in this case, we see customer 104 because that customer has a
demi-tarif (the left RDD in the join).



Outer Joins (leftOuterJoin, rightOuterJoin)

We can do the converse using a rightOuterJoin.

Example: Let's assume in this case, the CFF wants to know for which
customers (smartphone app users) it has subscriptions for. E.g., it's
possible that someone the mobile app, but no demi-tarif.

val customersWithLocationDataAndOptionalAbos =
abos.rightOuterJoin(locations)
// RDDL(Int, (Option[(String, Abonnement)], String))]



Outer Joins (leftOuterJoin, rightOuterJoin)

Example continued with concrete data:

val customersWithLocationDataAndOptionalAbos =

abos.rightOuterJoin(locations)

// RDD[(Int, (Option[(String, Abonnement)], String))]

customersWithLocationDataAndOptionalAbos.collect().foreach(println)

//
!/
!/
//
/!
//
!/
!/

(101, (Some((Ruetli,AG)),Bern))

(101, (Some((Ruetli,AG)),Thun))

(102, (Some((Brelaz,DemiTarif)),Lausanne))
(102, (Some((Brelaz,DemiTarif)),Geneve))

(102, (Some((Brelaz,DemiTarif)),Nyon))

(103, (Some((Gress,DemiTarifVisa)),Zurich))
(103, (Some((Gress,DemiTarifVisa)),St-Gallen))
(103, (Some((Gress,DemiTarifVisa)),Chur))

Note that, here, customer 104 disappears again because that customer doesn’t have
location info stored with the CFF (the right RDD in the join).



Resources to learn more operations on Pair RDDs

Book

The Learning Spark book is the most complete reference.
Free

» Spark Programming Guide
http://spark.apache.org/docs/1.2.1/programming-guide.html
Contains compact overview of Spark’s programming model. Lists
table of all transformers vs accessors, for example. However, doesn't
go into a lot of detail about individual operations.

» Spark API Docs
http://spark.apache.org/docs/1.2.1/api/scala/index.html#package

Look for class PairRDDFunctions for all possible operations on Pair
RDDs.


http://spark.apache.org/docs/1.2.1/programming-guide.html
http://spark.apache.org/docs/1.2.1/programming-guide.html
http://spark.apache.org/docs/1.2.1/api/scala/index.html#package
http://spark.apache.org/docs/1.2.1/api/scala/index.html#package

?? org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[366] 77

Think again what happens when you have to do a groupBy or a
groupByKey. Remember our data is distributed!



?? org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[366] 77

Think again what happens when you have to do a groupBy or a
groupByKey. Remember our data is distributed!

We typically have to move data from one node to another to be “grouped
with" its key. Doing this is called “shuffling”.



?? org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[366] 77

Think again what happens when you have to do a groupBy or a
groupByKey. Remember our data is distributed!

We typically have to move data from one node to another to be “grouped
with" its key. Doing this is called “shuffling”.

Shuffles Happen

Shuffles can be an enormous hit to because it means that Spark must send
data from one node to another. Why? Latency!

We'll talk more about these in the next lecture.



