

# **Distributed Key-Value Pairs**

Parallel Programming and Data Analysis

Heather Miller

### What we've seen so far

- we defined *Distributed Data Parallelism*
- we saw that Apache Spark implements this model
- ▶ we got a feel for what latency means to distributed systems

### What we've seen so far

- we defined *Distributed Data Parallelism*
- we saw that Apache Spark implements this model
- we got a feel for what latency means to distributed systems

### Spark's Programming Model

- ▶ We saw that, at a glance, Spark looks like Scala collections
- However, interally, Spark behaves differently than Scala collections
  - Spark uses *laziness* to save time and memory
- ► We saw *transformations* and *actions*
- ▶ We saw caching and persistence (*i.e.*, cache in memory, save time!)
- ▶ We saw how the cluster topology comes into the programming model
- We got a sampling of Spark's key-value pairs (Pair RDDs)

## Today...

- $1. \ \mbox{Reduction}$  operations in Spark vs Scala collections
- 2. More on Pair RDDs (key-value pairs)
- 3. We'll get a glimpse of what "shuffling" is, and why it hits performance (latency)

### **Reduction Operations**

#### Recall what we learned earlier in the course about foldLeft vs fold.

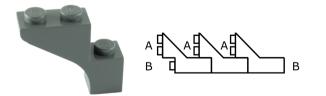
Which of these two were parallelizable?

### **Reduction Operations**

Recall what we learned earlier in the course about foldLeft vs fold. Which of these two were parallelizable?

foldLeft is not parallelizable.

def foldLeft[B](z: B)(f: (B, A) => B): B



foldLeft is not parallelizable.

```
def foldLeft[B](z: B)(f: (B, A) => B): B
```

Being able to change the result type from A to B forces us to have to execute foldLeft sequentially from left to right.

Concretely, given:

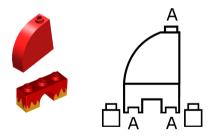
```
val xs = List(1, 2, 3)
val res = xs.foldLeft("")((str: String, i: Int) => str + i)
```

What happens if we try to break this collection in two and parallelize? (*Example on whiteboard*)

### Reduction Operations: Fold

fold enables us to parallelize things, but it restricts us to always returning the same type.

**def** fold(z: A)(f: (A, A) => A): A

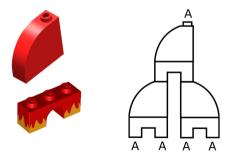


It enables us to parallelize using a single function f by enabling us to build parallelizable reduce trees.

### Reduction Operations: Fold

It enables us to parallelize using a single function f by enabling us to build parallelizable reduce trees.

**def** fold(z: A)(f: (A, A) => A): A



Does anyone remember what aggregate does?

Does anyone remember what aggregate does?

```
aggregate[B](z: => B)(seqop: (B, A) => B, combop: (B, B) => B): B
```

Does anyone remember what aggregate does?

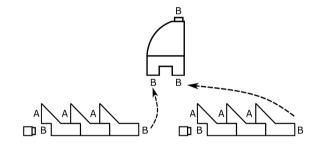
```
aggregate[B](z: => B)(seqop: (B, A) => B, combop: (B, B) => B): B
```

aggregate is said to be general because it gets you the best of both worlds.

#### Properties of aggregate

- 1. Parallelizable.
- 2. Possible to change the return type.

 $aggregate[B](z: \Rightarrow B)(seqop: (B, A) \Rightarrow B, combop: (B, B) \Rightarrow B): B$ 



Aggregate lets you still do sequential-style folds *in chunks* which change the result type. Additionally requiring the combop function enables building one of these nice reduce trees that we saw is possible with fold to *combine these chunks* in parallel.

Scala collections: fold foldLeft/foldRight reduce aggregate Spark: fold foldLeft/foldRight reduce aggregate

Scala collections: fold foldLeft/foldRight reduce aggregate Spark: fold foldLeft/foldRight reduce aggregate

Spark doesn't even give you the option to use foldLeft/foldRight. Which means that if you have to change the return type of your reduction operation, your only choice is to use aggregate.

Scala collections: fold foldLeft/foldRight reduce aggregate Spark: fold foldLeft/foldRight reduce aggregate

Spark doesn't even give you the option to use foldLeft/foldRight. Which means that if you have to change the return type of your reduction operation, your only choice is to use aggregate.

**Question:** Why not still have a serial foldLeft/foldRight on Spark?

Scala collections: fold foldLeft/foldRight reduce aggregate Spark: fold foldLeft/foldRight reduce aggregate

Spark doesn't even give you the option to use foldLeft/foldRight. Which means that if you have to change the return type of your reduction operation, your only choice is to use aggregate.

**Question:** Why not still have a serial foldLeft/foldRight on Spark?

Doing things serially across a cluster is actually difficult. Lots of synchronization. Doesn't make a lot of sense.

In Spark, aggregate is a more desirable reduction operator a majority of the time. Why do you think that's the case?

In Spark, aggregate is a more desirable reduction operator a majority of the time. Why do you think that's the case?

As you will realize from experimenting with our Spark cluster, much of the time when working with large-scale data, our goal is to **project down from larger/more complex data types**.

In Spark, aggregate is a more desirable reduction operator a majority of the time. Why do you think that's the case?

As you will realize from experimenting with our Spark cluster, much of the time when working with large-scale data, our goal is to **project down from larger/more complex data types**.

### Example:

```
case class WikipediaPage(
  title: String,
  redirectTitle: String,
  timestamp: String,
  lastContributorUsername: String,
  text: String)
```

As you will realize from experimenting with our Spark cluster, much of the time when working with large-scale data, our goal is to *project down from larger/more complex data types*.

Example:

```
case class WikipediaPage(
  title: String,
  redirectTitle: String,
  timestamp: String,
  lastContributorUsername: String,
  text: String)
```

I might only care about title and timestamp, for example. In this case, it'd save a lot of time/memory to not have to carry around the full-text of each article (text) in our accumulator!

## Pair RDDs (Key-Value Pairs)

Key-value pairs are known as Pair RDDs in Spark.

When an RDD is created with a pair as its element type, Spark automatically adds a number of extra useful additional methods (extension methods) for such pairs.

## Pair RDDs (Key-Value Pairs)

#### Creating a Pair RDD

Pair RDDs are most often created from already-existing non-pair RDDs, for example by using the map operation on RDDs:

```
val rdd: RDD[WikipediaPage] = ...
```

```
val pairRdd = ???
```

## Pair RDDs (Key-Value Pairs)

#### Creating a Pair RDD

Pair RDDs are most often created from already-existing non-pair RDDs, for example by using the map operation on RDDs:

val rdd: RDD[WikipediaPage] = ...

// Has type: org.apache.spark.rdd.RDD[(String, String)]
val pairRdd = rdd.map(page => (page.title, page.text))

Once created, you can now use transformations specific to key-value pairs such as reduceByKey, groupByKey, and join

## Some interesting Pair RDDs operations

#### Transformations

- groupByKey
- reduceByKey
- ▶ join
- leftOuterJoin/rightOuterJoin

### Action

countByKey

## Pair RDD Transformation: groupByKey

Recall groupBy from Scala collections. groupByKey can be thought of as a groupBy on Pair RDDs that is specialized on grouping all values that have the same key. As a result, it takes no argument.

def groupByKey(): RDD[(K, Iterable[V])]

#### Example:

```
case class Event(organizer: String, name: String, budget: Int)
val eventsRdd = sc.parallelize(...)
.map(event => (event.organizer, event.budget))
```

```
val groupedRdd = eventsRdd.groupByKey()
```

Here the key is organizer. What does this call do?

## Pair RDD Transformation: groupByKey

#### Example:

```
case class Event(organizer: String, name: String, budget: Int)
val eventsRdd = sc.parallelize(...)
.map(event => (event.organizer, event.budget))
```

val groupedRdd = eventsRdd.groupByKey()

// TRICK QUESTION! As-is, it "does" nothing. It returns an unevaluated RDD

```
groupedRdd.collect().foreach(println)
// (Prime Sound,CompactBuffer(42000))
// (Sportorg,CompactBuffer(23000, 12000, 1400))
// ...
```

(Note: all code available in "exercise1" notebook.)

## Pair RDD Transformation: reduceByKey

Conceptually, reduceByKey can be thought of as a combination of groupByKey and reduce-ing on all the values per key. It's more efficient though, than using each separately. (We'll see why later.)

```
def reduceByKey(func: (V, V) => V): RDD[(K, V)]
```

**Example:** Let's use eventsRdd from the previous example to calculate the total budget per organizer of all of their organized events.

```
case class Event(organizer: String, name: String, budget: Int)
val eventsRdd = sc.parallelize(...)
```

.map(event => (event.organizer, event.budget))

val budgetsRdd = ...

## Pair RDD Transformation: reduceByKey

**Example:** Let's use eventsRdd from the previous example to calculate the total budget per organizer of all of their organized events.

```
case class Event(organizer: String, name: String, budget: Int)
val eventsRdd = sc.parallelize(...)
.map(event => (event.organizer, event.budget))
```

```
val budgetsRdd = eventsRdd.reduceByKey(_+_)
```

reducedRdd.collect().foreach(println)

```
// (Prime Sound,42000)
```

```
// (Sportorg, 36400)
```

```
// (Innotech, 320000)
```

```
// (Association Balélec,50000)
```

(Note: all code available in "exercise1" notebook.)

### Pair RDD Transformation: mapValues and Action: countByKey

mapValues (def mapValues[U](f: (V) U): RDD[(K, U)]) can be thought
of as a short-hand for:

```
rdd.map { case (x, y): (x, func(y))}
```

That is, it simply applies a function to only the values in a Pair RDD.

**countByKey** (def countByKey(): Map[K, Long]) simply counts the number of elements per key in a Pair RDD, returning a normal Scala Map (remember, it's an action!) mapping from keys to counts.

## Pair RDD Transformation: mapValues and Action: countByKey

**Example:** we can use each of these operations to compute the average budget per event organizer.

```
// Calculate a pair (as a key's value) containing (budget, #events)
val intermediate =
    eventsRdd.mapValues(b => (b, 1))
               .reduceByKey((v1, v2) => (v1._1 + v2._1, v1._2 + v2._2))
// intermediate: RDD[(String, (Int, Int))]
```

val avgBudgets = ???

## Pair RDD Transformation: mapValues and Action: countByKey

**Example:** we can use each of these operations to compute the average budget per event organizer.

```
val avgBudgets = intermediate.mapValues {
   case (budget, numberOfEvents) => budget / numberOfEvents
}
avgBudgets.collect().foreach(println)
// (Prime Sound,42000)
// (Sportorg,12133)
// (Innotech,106666)
// (Association Balélec,50000)
```

### Joins

Joins are another sort of transformation on Pair RDDs. They're used to combine multiple datasets They are one of the most commonly-used operations on Pair RDDs!

There are two kinds of joins:

- Inner joins (join)
- Outer joins (leftOuterJoin/rightOuterJoin)

The key difference between the two is what happens to the keys when both RDDs don't contain the same key.

For example, if I were to join two RDDs containing different customerIDs (the key), the difference between inner/outer joins is what happens to customers whose IDs don't exist in both RDDs.

Inner joins return a new RDD containing combined pairs whose **keys are present in both input RDDs**.

```
def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]
```

**Example:** Let's pretend the CFF has two datasets. One RDD representing customers and their subscriptions (abos), and another representing customers and cities they frequently travel to (locations). (*E.g.*, gathered from CFF smartphone app.)

How do we combine only customers that have a subscription and where there is location info?

```
val abos = ... // RDD[(Int, (String, Abonnement))]
val locations = ... // RDD[(Int, String)]
```

```
val trackedCustomers = ???
```

## Inner Joins (join)

**Example:** Let's pretend the CFF has two datasets. One RDD representing customers and their subscriptions (abos), and another representing customers and cities they frequently travel to (locations). (*E.g.*, gathered from CFF smartphone app.)

How do we combine only customers that have a subscription and where there is location info?

```
val abos = ... // RDD[(Int, (String, Abonnement))]
val locations = ... // RDD[(Int, String)]
```

val trackedCustomers = abos.join(locations)
// trackedCustomers: RDD[(Int, ((String, Abonnement), String))]

## Inner Joins (join)

#### Example continued with concrete data:

val trackedCustomers = abos.join(locations)
// trackedCustomers: RDD[(Int, ((String, Abonnement), String))]

# Inner Joins (join)

### Example continued with concrete data:

```
trackedCustomers.collect().foreach(println)
```

- // (101,((Ruetli,AG),Bern))
- // (101,((Ruetli,AG),Thun))
- // (102,((Brelaz,DemiTarif),Nyon))
- // (102,((Brelaz,DemiTarif),Lausanne))
- // (102,((Brelaz,DemiTarif),Geneve))
- // (103,((Gress,DemiTarifVisa),St-Gallen))
- // (103,((Gress,DemiTarifVisa),Chur))
- // (103,((Gress,DemiTarifVisa),Zurich))

What happened to customer 104?

# Inner Joins (join)

### Example continued with concrete data:

trackedCustomers.collect().foreach(println)

- // (101,((Ruetli,AG),Bern))
- // (101,((Ruetli,AG),Thun))
- // (102,((Brelaz,DemiTarif),Nyon))
- // (102,((Brelaz,DemiTarif),Lausanne))
- // (102,((Brelaz,DemiTarif),Geneve))
- // (103,((Gress,DemiTarifVisa),St-Gallen))
- // (103,((Gress,DemiTarifVisa),Chur))
- // (103,((Gress,DemiTarifVisa),Zurich))

What happened to customer 104?

Customer 104 does *not* occur in the result, because there is no location data for this customer Remember, inner joins require keys to occur in *both* source RDDs (i.e., we must have location info).

Outer joins return a new RDD containing combined pairs whose **keys don't have to be present in both input RDDs**.

Outer joins are particularly useful for customizing how the resulting joined RDD deals with missing keys. With outer joins, we can decide which RDD's keys are most essential to keep-the left, or the right RDD in the join expression.

def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]
def rightOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (Option[V], W))]

(Notice the insertion and position of the Option!)

**Example:** Let's assume the CFF wants to know for which subscribers the CFF has managed to collect location information. E.g., it's possible that someone has a demi-tarif, but doesn't use the CFF app and only pays cash for tickets.

Which join do we use?

**Example:** Let's assume the CFF wants to know for which subscribers the CFF has managed to collect location information. E.g., it's possible that someone has a demi-tarif, but doesn't use the CFF app and only pays cash for tickets.

Which join do we use?

val abosWithOptionalLocations = ???

**Example:** Let's assume the CFF wants to know for which subscribers the CFF has managed to collect location information. E.g., it's possible that someone has a demi-tarif, but doesn't use the CFF app and only pays cash for tickets.

Which join do we use?

val abosWithOptionalLocations = abos.leftOuterJoin(locations)
// abosWithOptionalLocations: RDD[(Int, ((String, Abonnement), Option[String]))]

Example continued with concrete data:

val abosWithOptionalLocations = abos.leftOuterJoin(locations)
abosWithOptionalLocations.collect().foreach(println)

- // (101,((Ruetli,AG),Some(Thun)))
- // (101,((Ruetli,AG),Some(Bern)))
- // (102,((Brelaz,DemiTarif),Some(Geneve)))
- // (102,((Brelaz,DemiTarif),Some(Nyon)))
- // (102,((Brelaz,DemiTarif),Some(Lausanne)))
- // (103,((Gress,DemiTarifVisa),Some(Zurich)))
- // (103,((Gress,DemiTarifVisa),Some(St-Gallen)))
- // (103,((Gress,DemiTarifVisa),Some(Chur)))
- // (104,((Schatten,DemiTarif),None))

Since we use a leftOuterJoin, keys are guaranteed to occur in the left source RDD. Therefore, in this case, we see customer 104 because that customer has a demi-tarif (the left RDD in the join).

We can do the converse using a rightOuterJoin.

**Example:** Let's assume in this case, the CFF wants to know for which customers (smartphone app users) it has subscriptions for. E.g., it's possible that someone the mobile app, but no demi-tarif.

val customersWithLocationDataAndOptionalAbos =
 abos.rightOuterJoin(locations)
// RDD[(Int, (Option[(String, Abonnement)], String))]

#### Example continued with concrete data:

```
val customersWithLocationDataAndOptionalAbos =
    abos.rightOuterJoin(locations)
// RDD[(Int, (Option[(String, Abonnement)], String))]
```

customersWithLocationDataAndOptionalAbos.collect().foreach(println)

- // (101,(Some((Ruetli,AG)),Bern))
- // (101,(Some((Ruetli,AG)),Thun))
- // (102,(Some((Brelaz,DemiTarif)),Lausanne))
- // (102,(Some((Brelaz,DemiTarif)),Geneve))
- // (102,(Some((Brelaz,DemiTarif)),Nyon))
- // (103,(Some((Gress,DemiTarifVisa)),Zurich))
- // (103,(Some((Gress,DemiTarifVisa)),St-Gallen))
- // (103,(Some((Gress,DemiTarifVisa)),Chur))

Note that, here, customer 104 disappears again because that customer doesn't have location info stored with the CFF (the right RDD in the join).

### Resources to learn more operations on Pair RDDs

### Book

The Learning Spark book is the most complete reference.

Free

### Spark Programming Guide

http://spark.apache.org/docs/1.2.1/programming-guide.html

Contains compact overview of Spark's programming model. Lists table of all *transformers* vs *accessors*, for example. However, doesn't go into a lot of detail about individual operations.

### Spark API Docs

http://spark.apache.org/docs/1.2.1/api/scala/index.html#package Look for class PairRDDFunctions for all possible operations on Pair RDDs.

### ?? org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[366] ??

Think again what happens when you have to do a groupBy or a groupByKey. Remember our data is distributed!

### ?? org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[366] ??

Think again what happens when you have to do a groupBy or a groupByKey. Remember our data is distributed!

We typically have to move data from one node to another to be "grouped with" its key. Doing this is called "shuffling".

## ?? org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[366] ??

Think again what happens when you have to do a groupBy or a groupByKey. Remember our data is distributed!

We typically have to move data from one node to another to be "grouped with" its key. Doing this is called "shuffling".

### **Shuffles Happen**

Shuffles can be an enormous hit to because it means that Spark must send data from one node to another. Why? **Latency!** 

We'll talk more about these in the next lecture.