
Immutability and Thread Safety



Lesson Objectives
• After completing this lesson, you should be able to: 
– Understand basic thread safety in the JVM 
– Describe the importance of immutability in multithreaded 

applications 
– Outline how to use snapshots to preserve thread safety 

with case classes



What is Thread Safety
• The JVM has a well-defined memory model with 

specific guarantees 
• There are two concerns: 

– Synchronize-With: Who is able to change state and in 
what order (locks) 

– Happens-Before: When to publish changes on one thread 
to all other threads (memory barriers)



Names versus Values





The Left Side of the Equals Sign
• Represents a pointer to the current value 
• We want this to be “final” as much as possible, using 

a val 
• Reassignment to a new value is possible when using 

a var



The Right Side of the Equals Sign
• Represents the value of the current state 
• This should always be immutable, meaning that the 

class instance contains only fields that are defined 
as val 

• If not, you must protect the state and who can 
change it using Mutually Exclusive Locks



Using a var for Snapshots
• Allows us to keep the value on the right side of the 

equals immutable, but still change our current state 
by replacing what the var points to with another 
instance 

• The case class copy() method will help you do this



@volatile
• The @volatile annotation must be used when 

you follow the snapshot strategy, to ensure that all 
threads see your updates 

• The case class copy() method will help you do this



@volatile



• Having completing this lesson, you should be able to: 
– Understand basic thread safety in the JVM 
– Describe the importance of immutability in multithreaded 

applications 
– Outline how to use snapshots to preserve thread safety 

with case classes

Lesson Summary


