
Verisign Public 72

Kafka Producers

Verisign Public

Writing data to Kafka

• You use Kafka “producers” to write data to Kafka brokers.
• Available for JVM (Java, Scala), C/C++, Python, Ruby, etc.
• The Kafka project only provides the JVM implementation.

• Has risk that a new Kafka release will break non-JVM clients.

• A simple example producer:

• Full details at:
• https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+Producer+Example

73

https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+Producer+Example

Verisign Public

• A simple example producer:

• Full details at:

73

Kafka Producers

• The Kafka project only provides the JVM implementation.

• Has risk that a new Kafka release will break non-JVM clients.

 • Producer picks which partition to send record to per topic
• Producers send records to topics

• Can be done round-robin

• Can be based on priority

Verisign Public

Producers

• The Java producer API is very simple.
• We’ll talk about the slightly confusing details next. -

74

Verisign Public

Producers

• Two types of producers: “async” and “sync”

• Same API and configuration, but slightly different semantics.
• What applies to a sync producer almost always applies to async, too.
• Async producer is preferred when you want higher throughput.

• Important configuration settings for either producer type:

75

client.id identifies producer app, e.g. in system logs

producer.type async or sync

request.required.acks acking semantics, cf. next slides

serializer.class configure encoder, cf. slides on Avro usage

metadata.broker.list cf. slides on bootstrapping list of brokers

Verisign Public

Sync producers

• Straight-forward so I won’t cover sync producers here
• Please go to https://kafka.apache.org/documentation.html

• Most important thing to remember: producer.send() will block!

76

https://kafka.apache.org/documentation.html

Verisign Public

Async producer

• Sends messages in background = no blocking in client.
• Provides more powerful batching of messages (see later).
• Wraps a sync producer, or rather a pool of them.

• Communication from async->sync producer happens via a queue.
• Which explains why you may see kafka.producer.async.QueueFullException

• Each sync producer gets a copy of the original async producer config,
including the request.required.acks setting (see later).

• Implementation details: Producer, async.AsyncProducer,
async.ProducerSendThread, ProducerPool, async.DefaultEventHandler#send()

77

https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/Producer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/async/AsyncProducer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/async/ProducerSendThread.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/ProducerPool.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/async/DefaultEventHandler.scala

Verisign Public

Producers

• Two aspects worth mentioning because they significantly influence
Kafka performance:

1. Message acking
2. Batching of messages

79

Verisign Public

1) Message acking

• Background:
• In Kafka, a message is considered committed when “any required” ISR (in-

sync replicas) for that partition have applied it to their data log.
• Message acking is about conveying this “Yes, committed!” information back

from the brokers to the producer client.
• Exact meaning of “any required” is defined by request.required.acks.

• Only producers must configure acking
• Exact behavior is configured via request.required.acks, which

determines when a produce request is considered completed.
• Allows you to trade latency (speed) <-> durability (data safety).
• Consumers: Acking and how you configured it on the side of producers do

not matter to consumers because only committed messages are ever given
out to consumers. They don’t need to worry about potentially seeing a
message that could be lost if the leader fails.

80

Verisign Public

1) Message acking

• Typical values of request.required.acks
• 0: producer never waits for an ack from the broker.

• Gives the lowest latency but the weakest durability guarantees.

• 1: producer gets an ack after the leader replica has received the data.
• Gives better durability as the we wait until the lead broker acks the request. Only msgs that

were written to the now-dead leader but not yet replicated will be lost.

• -1: producer gets an ack after all ISR have received the data.
• Gives the best durability as Kafka guarantees that no data will be lost as long as at least

one ISR remains.

• Beware of interplay with request.timeout.ms!
• "The amount of time the broker will wait trying to meet the `request.required.acks`

requirement before sending back an error to the client.”
• Caveat: Message may be committed even when broker sends timeout error to client

(e.g. because not all ISR ack’ed in time). One reason for this is that the producer
acknowledgement is independent of the leader-follower replication, and ISR’s send
their acks to the leader, the latter of which will reply to the client.

81

be
tte

r
la

te
nc

y
be

tte
r

du
ra

bi
lity

Verisign Public

2) Batching of messages

• Batching improves throughput
• Tradeoff is data loss if client dies before pending messages have been sent.

• You have two options to “batch” messages in 0.8:
1. Use send(listOfMessages).

• Sync producer: will send this list (“batch”) of messages right now. Blocks!
• Async producer: will send this list of messages in background “as usual”, i.e.

according to batch-related configuration settings. Does not block!

2. Use send(singleMessage) with async producer.

• For async the behavior is the same as send(listOfMessages).

82

Verisign Public

2) Batching of messages

• Option 1: How send(listOfMessages) works behind the scenes

• The original list of messages is partitioned (randomly if the default
partitioner is used) based on their destination partitions/topics, i.e. split into
smaller batches.

• Each post-split batch is sent to the respective leader broker/ISR (the
individual send()’s happen sequentially), and each is acked by its
respective leader broker according to request.required.acks.

83

partitioner.class p6 p1 p4 p4 p6

p4 p4

p6 p6

p1

p4 p4

p6 p6

p1

Current leader ISR (broker) for partition 4send()

Current leader ISR (broker) for partition 6send()

…and so on…

Verisign Public

2) Batching of messages

• Option 2: Async producer
• Standard behavior is to batch messages
• Semantics are controlled via producer configuration settings

• batch.num.messages

• queue.buffering.max.ms + queue.buffering.max.messages
• queue.enqueue.timeout.ms

• And more, see producer configuration docs.

• Remember: Async producer simply wraps sync producer!
• But the batch-related config settings above have no effect on “true”

sync producers, i.e. when used without a wrapping async producer.

84

http://kafka.apache.org/documentation.html#producerconfigs

Verisign Public

Write operations behind the scenes

• When writing to a topic in Kafka, producers write directly to the
partition leaders (brokers) of that topic

• Remember: Writes always go to the leader ISR of a partition!

• This raises two questions:
• How to know the “right” partition for a given topic?
• How to know the current leader broker/replica of a partition?

86

Verisign Public

• In Kafka, a producer – i.e. the client – decides to which target
partition a message will be sent.

• Can be random ~ load balancing across receiving brokers.
• Can be semantic based on message “key”, e.g. by user ID or domain

name.
• Here, Kafka guarantees that all data for the same key will go to the same

partition, so consumers can make locality assumptions.

• But there’s one catch with line 2 (i.e. no key) in Kafka 0.8.

1) How to know the “right” partition when sending?

87

Verisign Public

Keyed vs. non-keyed messages in Kafka 0.8

• If a key is not specified:

• Producer will ignore any configured partitioner.
• It will pick a random partition from the list of available partitions and stick to it for

some time before switching to another one = NOT round robin or similar!
• Why? To reduce number of open sockets in large Kafka deployments (KAFKA-1017).

• Default: 10mins, cf. topic.metadata.refresh.interval.ms

• See implementation in DefaultEventHandler#getPartition()

• If there are fewer producers than partitions at a given point of time, some partitions
may not receive any data. How to fix if needed?

• Try to reduce the metadata refresh interval topic.metadata.refresh.interval.ms

• Specify a message key and a customized random partitioner.

• In practice it is not trivial to implement a correct “random” partitioner in Kafka 0.8.
• Partitioner interface in Kafka 0.8 lacks sufficient information to let a partitioner select a

random and available partition. Same issue with DefaultPartitioner.

88

https://issues.apache.org/jira/browse/KAFKA-1017

Verisign Public

Keyed vs. non-keyed messages in Kafka 0.8

• If a key is specified:

• Key is retained as part of the msg, will be stored in the broker.
• One can design a partition function to route the msg based on key.
• The default partitioner assigns messages to a partition based on

their key hashes, via key.hashCode % numPartitions.
• Caveat:

• If you specify a key for a message but do not explicitly wire in a custom
partitioner via partitioner.class, your producer will use the default
partitioner.

• So without a custom partitioner, messages with the same key will still end up in
the same partition! (cf. default partitioner’s behavior above)

89

Verisign Public

2) How to know the current leader of a partition?

• Producers: broker discovery aka bootstrapping
• Producers don’t talk to ZooKeeper, so it’s not through ZK.
• Broker discovery is achieved by providing producers with a “bootstrapping”

broker list, cf. metadata.broker.list
• These brokers inform the producer about all alive brokers and where to find

current partition leaders. The bootstrap brokers do use ZK for that.

• Impacts on failure handling
• In Kafka 0.8 the bootstrap list is static/immutable during producer run-time.

This has limitations and problems as shown in next slide.
• The current bootstrap approach will improve in Kafka 0.9. This change will

make the life of Ops easier.

90

