
TensorFlow

Another framework for computing things.

Keep models like Spark, Flink, Hadoop, etc, in mind.

And let’s take a glimpse of what TensorFlow looks like
before we go into what it’s most often used for.

Basic Concepts

TensorFlow separates definition of computations from their execution

Basic Concepts

TensorFlow separates definition of computations from their execution

Phase 1: assemble a graph 
Phase 2: use a session to execute operations in the graph.

Basic Concepts (1): Assembling the Graph

Ok, what’s the graph?

Basic Concepts (1): Assembling the Graph

TensorFlow graphs are made up of two parts.

Ok, what’s the graph?

1. Edges.

2. Nodes.

Basic Concepts (1): Assembling the Graph

TensorFlow graphs are made up of two parts.

Ok, what’s the graph?

1. Edges.→ Tensors.

2. Nodes. → Operators, variables, constants.

Basic Concepts (1): Assembling the Graph

TensorFlow graphs are made up of two parts.

1. Edges.→ Tensors. Or, n-dimensional array.

• 0-d tensor: scalar (number)
• 1-d tensor: vector
• 2-d tensor: matrix

2. Nodes. → Operators, variables, constants.

Ok, what’s the graph?

Basic Concepts (1): Assembling the Graph

TensorFlow graphs are made up of two parts.

1. Edges.→ Tensors. Or, n-dimensional array.

• 0-d tensor: scalar (number)
• 1-d tensor: vector
• 2-d tensor: matrix

2. Nodes. → Operators, variables, constants.

Ok, what’s the graph?

Basic Concepts: A Simple Graph

import tensorflow as tf  
a = tf.add(3, 5)

Basic Concepts: A Simple Graph

import tensorflow as tf  
a = tf.add(3, 5)

Where did the names x and y
come from?

Basic Concepts: A Simple Graph

import tensorflow as tf  
a = tf.add(3, 5)

Where did the names x and y
come from?

TensorFlow automatically names
the nodes when you don’t
explicitly name them.

E.g.,  
x = 3 
y = 5

Basic Concepts: A Simple Graph

import tensorflow as tf  
a = tf.add(3, 5)

So this is just a visualization of
the computation that we want

to do, right?

Basic Concepts: A Simple Graph

import tensorflow as tf  
a = tf.add(3, 5)

So this is just a visualization of
the computation that we want

to do, right?

Tensors are data.

No! this is actually part of
our computation.

Basic Concepts: A Simple Graph

import tensorflow as tf  
a = tf.add(3, 5)

So this is just a visualization of
the computation that we want

to do, right?

Tensors are data.

TensorFlow = tensor + flow = data + flow

No! this is actually part of
our computation.

Basic Concepts: A Simple Graph

import tensorflow as tf  
a = tf.add(3, 5)  
print(a) # What does this do?

Basic Concepts: A Simple Graph

import tensorflow as tf  
a = tf.add(3, 5)  
print(a) # What does this do?

!>> Tensor("Add:0", shape=(), dtype=int32)
Result:

The answer is not 8!

Basic Concepts: Sessions

A Session encapsulates the environment in which Operation objects
are executed and Tensor objects are evaluated.

A Session will also do stuff like allocating memory to store the current
values of variables.

Think of a Session as the thing which:
- bundles up environment where your computations are run.

- is the handle to trigger the execution of your staged computations!

How do you get the value of a?

import tensorflow as tf  
a = tf.add(3, 5)  
print(a)

To actually compute a, we need to create a Session, assign it to
a variable, and indicate that we would like it to run a.

Basic Concepts (2): Running the Graph

import tensorflow as tf  
a = tf.add(3, 5)  
with tf.Session() as sess: 
 print(sess.run(a))

!>> 8
Result:

Another Graph

x=2 
y=3 
op1 = tf.add(x, y)  
op2 = tf.multiply(x, y) 
op3 = tf.pow(op2, op1)  
with tf.Session() as sess:  
 op3 = sess.run(op3)

Another Another Graph

x=2 
y=3 
add_op = tf.add(x, y)  
mul_op = tf.multiply(x, y) 
useless = tf.multiply(x, add_op) 
pow_op = tf.pow(add_op, mul_op) 
with tf.Session() as sess: 
 z = sess.run(pow_op) 

Another Another Graph

x=2 
y=3 
add_op = tf.add(x, y)  
mul_op = tf.multiply(x, y) 
useless = tf.multiply(x, add_op) 
pow_op = tf.pow(add_op, mul_op) 
with tf.Session() as sess: 
 z = sess.run(pow_op) 

What happens here?

Another Another Graph

x=2 
y=3 
add_op = tf.add(x, y)  
mul_op = tf.multiply(x, y) 
useless = tf.multiply(x, add_op) 
pow_op = tf.pow(add_op, mul_op) 
with tf.Session() as sess: 
 z = sess.run(pow_op) 

What happens here?

We only want the value of pow_op.
Since pow-op doesn’t depend on useless, we don’t compute
the value of useless!

We can skip computations we don’t absolutely need!

Another Another Graph

x=2 
y=3 
add_op = tf.add(x, y)  
mul_op = tf.multiply(x, y) 
useless = tf.multiply(x, add_op) 
pow_op = tf.pow(add_op, mul_op) 
with tf.Session() as sess: 
 z = sess.run(pow_op) 

What happens here?

We only want the value of pow_op.
Since pow-op doesn’t depend on useless, we don’t compute
the value of useless!

We can skip computations we don’t absolutely need!

The useless subgraph is skipped!

Computations broken into subgraphs.

Subgraphs Can Be Distributed

It’s possible to break graphs into
several subgraphs and run them
in parallel across:

- CPUs
- GPUs
- TPUs
- or other devices

Subgraphs Can Be Distributed

It’s possible to break graphs into
several subgraphs and run them
in parallel across:

- CPUs
- GPUs
- TPUs
- or other devices

A Tensor Processing Unit (TPU)
is a custom ASIC tailored to
TensorFlow.

“More tolerant of reduced computational precision, which means it requires fewer
transistors per operation. Because of this, we can squeeze more operations per second
into the silicon, use more sophisticated and powerful machine learning models and
apply these models more quickly, so users get more intelligent results more rapidly.”

Why Make Everything a Graph?
1. We can save computation. Only run subgraphs  
 that lead to the values you actually want to fetch.

2. Break up computation into small, differential  
 pieces to facilitate auto-differentiation.

3. Facilitate distributed computation. Spread  
 work across multiple CPUs, GPUs, TPUs, or other  
 devices.

4. Many ML models are already graphs. Most  
 common ML algorithms are already taught and  
 visualized as directed graphs.

5. Compilation/performance. TensorFlow’s XLA  
 Compiler can generate faster code, for example, by  
 fusing together adjacent operations.

Why Make Everything a Graph?

What makes TensorFlow different from
other models of computation?
Such as Spark, Flink, Hadoop, etc.?

On top of that, it comes with extra support for deep learning/
machine learning tasks.

It can do most simple data-flow computations that we’ve seen in
the MapReduce programming model.

Shape of a Learning Problem:  
Iris Classification
Goal: classify each Iris flower you find.

We will classify Iris flowers based only on the length and width
of their sepals and petals.

We’ll focus on the following 3 species:
Iris setosa, Iris virginica, Iris versicolor

Shape of a Learning Problem:  
Iris Classification

Starting point: We have a data set of 120 Iris flowers with
their sepal and petal measurements.

The first 5 elements:

Shape of a Learning Problem:  
Iris Classification

Given a problem and some data, the shape of the problem we
must solve looks like:

1. Import and parse the data sets
2. Create feature columns to describe the data
3. Select the type of model (or create one yourself)
4. Train the model
5. Evaluate the model’s effectiveness
6. Let the trained model make its own predictions

Shape of a Learning Problem:  
Iris Classification

1. Import and parse the data sets

TRAIN_URL = ”http:!//download.tensorflow.org/data/iris_training.csv”  
TEST_URL = ”http:!//download.tensorflow.org/data/iris_test.csv”

CSV_COLUMN_NAMES = [’SepalLength’, ’SepalWidth’, 
 ’PetalLength’, ’PetalWidth’, ’Species’]

def load_data(label_name=’Species’): 
 ”””Parses the csv file in TRAIN_URL and TEST_URL.”””  
 # !!... 
 return (train_features, train_label), (test_features, test_label)

Shape of a Learning Problem:  
Iris Classification

2. Create feature columns to describe the data

VERSION 1: Create feature columns for all features.
my_feature_columns = []  
for key in train_x.keys():  
 my_feature_columns.append(tf.feature_column.numeric_column(key=key))

VERSION 2: Create feature columns for all features.  
my_feature_columns = [ 
 tf.feature_column.numeric_column(key=’SepalLength’),  
 tf.feature_column.numeric_column(key=’SepalWidth’),  
 tf.feature_column.numeric_column(key=’PetalLength’),  
 tf.feature_column.numeric_column(key=’PetalWidth’)  
]

A feature column is a data structure that tells your model
how to interpret the data in each feature.
In this case, we’re interpreting the features quite literally, but in
many other cases, feature selection is less obvious.

Shape of a Learning Problem:  
Iris Classification

3. Select a model to use to solve your problem

In this case, we’ll choose a
neural network.

Neural networks can find
complex relationships
between features and
labels. It’s normally a very
structured graph
organized into one or
more hidden layers.

Shape of a Learning Problem:  
Iris Classification

3. Select a model to use to solve your problem

To specify a model type, first create an instance of Estimator.

We can use a pre-made Estimator, provided by TensorFlow called
tf.estimator.DNNClassifier. This Estimator builds a neural
network that classifies examples.

classifier = tf.estimator.DNNClassifier( 
 feature_columns=my_feature_columns,  
 hidden_units=[10, 10], 
 n_classes=3)

The length of the list assigned to hidden_units identifies the
number of hidden layers (2, in this case).

Shape of a Learning Problem:  
Iris Classification

4. Train the model

Instantiating a tf.Estimator.DNNClassifier creates a framework for
learning the model. Basically, we've wired a network but haven't yet
let data flow through it.

To train the neural network, call the Estimator object's train method.

classifier.train(
 input_fn=lambda:train_input_fn(train_feature, train_label, args.batch_size),
 steps=args.train_steps)

Shape of a Learning Problem:  
Iris Classification

4. Train the model

classifier.train(
 input_fn=lambda:train_input_fn(train_feature, train_label, args.batch_size),
 steps=args.train_steps)

train takes:
- train_feature: a Python dictionary in which (1) each key is the

name of a feature, (2) each value is an array containing the value
for each example in the training set.

- train_label: an array containing the values of the label of every
example in the data set.

- args.batch_size: an integer representing the batch size, or the
number of examples used in one iteration (that is,
one gradient update) of model training.

Shape of a Learning Problem:  
Iris Classification

5. Evaluate the model’s effectiveness

Evaluating means determining how effectively the model makes
predictions.

To determine the Iris classification model's effectiveness, pass some
sepal and petal measurements to the model and ask the model to
predict what Iris species they represent. Then compare the model's
prediction against the actual label.

Shape of a Learning Problem:  
Iris Classification

5. Evaluate the model’s effectiveness

Estimators provide an estimate method to do this for you.

Evaluate the model.
eval_result = classifier.evaluate(
 input_fn=lambda:eval_input_fn(test_x, test_y, args.batch_size))
print('\nTest set accuracy: {accuracy:0.3f}\n’.format(!**eval_result))

Output:  
Test set accuracy: 0.967

The call to classifier.evaluate is similar to the call to classifier.train.

The biggest difference is that classifier.evaluate must get its examples
from the test set rather than the training set. In other words, to fairly
assess a model's effectiveness, the examples used to evaluate a model
must be different from the examples used to train the model.

Shape of a Learning Problem:  
Iris Classification

6. Let the trained model make its own predictions

Now we have a trained model we’d like to actually use to make
predictions on unlabeled examples.

Assuming we have the following three unlabeled examples:

predict_x = {
 'SepalLength': [5.1, 5.9, 6.9],
 'SepalWidth': [3.3, 3.0, 3.1],
 'PetalLength': [1.7, 4.2, 5.4],
 'PetalWidth': [0.5, 1.5, 2.1],
}

Shape of a Learning Problem:  
Iris Classification

6. Let the trained model make its own predictions

We can use the predict method on Estimator.

predictions = classifier.predict(
 input_fn=lambda:eval_input_fn(predict_x,
 labels=None,
 batch_size=args.batch_size))

The predict method returns a python iterable, yielding a
dictionary of prediction results for each example.

'probabilities': array([1.19127117e-08, 3.97069454e-02, 9.60292995e-01])

Prediction is "Setosa" (99.6%), expected "Setosa"
Prediction is "Versicolor" (99.8%), expected "Versicolor"
Prediction is "Virginica" (97.9%), expected "Virginica"

TensorFlow: High-Level Picture

TensorFlow: High-Level Picture

First few slides:
tensors/graphs

TensorFlow: High-Level Picture

The example Iris
classification problem

TensorFlow: High-Level Picture

The kernel operations are particular implementations of operations that
can be run on a particular type of device (e.g., CPU, GPU)

This is a major strength of TensorFlow! It means it can run on
heterogeneous hardware!

TensorFlow: High-Level Picture

“TensorFlow takes computations described using a dataflow-like model
and maps them onto a wide variety of different hardware platforms.”

“…ranging from running inference on mobile device platforms like
Android and iOS to modest-sized training and inference systems using
single machines containing one or many GPU cards to large-scale
training systems running on hundreds of specialized machines with
thousands of GPUs.”

“Having a single system that can span such a broad range of platforms
significantly simplifies the real-world use of a machine learning system.
(As we have found that having separate systems for large-scale training
and small-scale deployment leads to significant maintenance burdens
and leaky abstractions.”

- From Google’s 2015 TensorFlow whitepaper

TensorFlow: High-Level Picture
At Google, used in:

- Google Search
- advertising products
- speech recognition systems
- Google Photos
- Google Maps
- StreetView
- Google Translate
- YouTube
- and many others…

Used at Google as a scalable distributed training and inference system by over 50 teams!

TensorFlow: High-Level Picture
At Google, used in:

- Google Search
- advertising products
- speech recognition systems
- Google Photos
- Google Maps
- StreetView
- Google Translate
- YouTube
- and many others…

Used at Google as a scalable distributed training and inference system by over 50 teams!

Big idea:  
TF programming model can be run distributed,
single-node, or on various different hardware.

Back to Our Graphs

x=2 
y=3 
add_op = tf.add(x, y)  
mul_op = tf.multiply(x, y) 
useless = tf.multiply(x, add_op) 
pow_op = tf.pow(add_op, mul_op) 
with tf.Session() as sess: 
 z = sess.run(pow_op) 

Back to Our Graphs

x=2 
y=3 
add_op = tf.add(x, y)  
mul_op = tf.multiply(x, y) 
useless = tf.multiply(x, add_op) 
pow_op = tf.pow(add_op, mul_op) 
with tf.Session() as sess: 
 z = sess.run(pow_op) 

As it stands, this graph is not especially interesting because it
always produces a constant result.

A graph can be parameterized to accept external inputs, known
as placeholders.

A placeholder is a promise to provide a value later,
like a future, or promise in other languages.

Parameterized Graphs: Placeholders

x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = x + y

A graph can be parameterized to accept external inputs, known
as placeholders.

This can be thought of as a function in which we define two input
parameters (x and y) and then an operation on them.

Parameterized Graphs: Placeholders

x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = x + y

A graph can be parameterized to accept external inputs, known
as placeholders.

This can be thought of as a function in which we define two input
parameters (x and y) and then an operation on them.

We can evaluate this graph with multiple inputs by using the feed_dict
argument of the run method to feed concrete values to the
placeholders.

print(sess.run(z, feed_dict={x: 3, y: 4.5}))
print(sess.run(z, feed_dict={x: [1, 3], y: [2, 4]}))

Output:
7.5
[3. 7.]

Parameterized Graphs: Placeholders

x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = x + y

A graph can be parameterized to accept external inputs, known
as placeholders.

This can be thought of as a function in which we define two input
parameters (x and y) and then an operation on them.

We can evaluate this graph with multiple inputs by using the feed_dict
argument of the run method to feed concrete values to the
placeholders.

print(sess.run(z, feed_dict={x: 3, y: 4.5}))
print(sess.run(z, feed_dict={x: [1, 3], y: [2, 4]}))

Output:
7.5
[3. 7.]

Placeholders are a kind of Tensor!

Parameterized Models: Datasets

Placeholders work for simple experiments, but Datasets are the
preferred method of streaming data into a model.

Parameterized Models: Datasets

my_data = [[0, 1,],[2, 3,],[4, 5,],[6, 7,],]

Placeholders work for simple experiments, but Datasets are the
preferred method of streaming data into a model.

But Datasets by themselves aren’t Tensors. To get a runnable
tf.Tensor from a Dataset you must first convert it to
a tf.data.Iterator, and then call the Iterator's get_next method.

Given,

You can create an Iterator using the the make_one_shot_iterator method:

slices = tf.data.Dataset.from_tensor_slices(my_data)
next_item = slices.make_one_shot_iterator().get_next()

Parameterized Models: Datasets

my_data = [[0, 1,],[2, 3,],[4, 5,],[6, 7,],]

Placeholders work for simple experiments, but Datasets are the
preferred method of streaming data into a model.

But Datasets by themselves aren’t Tensors. To get a runnable
tf.Tensor from a Dataset you must first convert it to
a tf.data.Iterator, and then call the Iterator's get_next method.

Given,

You can create an Iterator using the the make_one_shot_iterator method:

slices = tf.data.Dataset.from_tensor_slices(my_data)
next_item = slices.make_one_shot_iterator().get_next()

Data obtained from a Dataset via an Iterator is another kind of Tensor!

But what about nodes/operations?

1. Edges.→ Tensors. Or, n-dimensional array.

• 0-d tensor: scalar (number)
• 1-d tensor: vector
• 2-d tensor: matrix

2. Nodes. → Operators, variables, constants.

We have seen many different kinds of datatypes as tensors. But
what about operations on that data?

But what about nodes/operations?

Category Examples

Element-wise mathematical operations Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ….

Array operations Concat, Slice, Split, Constant, Rank, Shape, Shuffle…

Matrix operations MatMul, MatrixInverse, MatrixDeterminant, …

Stateful operations Variable, Assign, AssignAdd, …

Neural-net building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, …

Checkpointing operations Save, Restore

Queue and synchronization operations Enqueue, Dequeue, MutexAcquire, MutexRelease,…

Control flow operations Merge, Switch, Enter, Leave, NextIteration

TensorFlow makes scores of specialized operations available, given
some kind of Tensor.

What gets updated when training
happens?

What gets updated when training
happens?
Variables do.

A TensorFlow variable is the best way to represent shared,
persistent state manipulated by your program.

What gets updated when training
happens?
Variables do.

A TensorFlow variable is the best way to represent shared,
persistent state manipulated by your program.

A tf.Variable represents a tensor whose value can be changed by
running ops on it.

Unlike tf.Tensor objects, a tf.Variable exists outside the context
of a singlesession.run call.

Internally, a tf.Variable stores a persistent tensor. Specific ops
allow you to read and modify the values of this tensor. These
modifications are visible across multiple tf.Sessions, so multiple
workers can see the same values for a tf.Variable.

What gets updated when training
happens?
Variables do.

A TensorFlow variable is the best way to represent shared,
persistent state manipulated by your program.

A tf.Variable represents a tensor whose value can be changed by
running ops on it.

Unlike tf.Tensor objects, a tf.Variable exists outside the context
of a singlesession.run call.

Internally, a tf.Variable stores a persistent tensor. Specific ops
allow you to read and modify the values of this tensor. These
modifications are visible across multiple tf.Sessions, so multiple
workers can see the same values for a tf.Variable.

What gets updated when training
happens?
Variables do.

A TensorFlow variable is the best way to represent shared,
persistent state manipulated by your program.

my_variable = tf.get_variable("my_variable", [1, 2, 3])

What gets updated when training
happens?
Variables do.

A TensorFlow variable is the best way to represent shared,
persistent state manipulated by your program.

my_variable = tf.get_variable("my_variable", [1, 2, 3])

Variables also must be initialized. One way to do that:

my_int_variable = tf.get_variable("my_int_variable", [1, 2, 3],
 dtype=tf.int32,initializer=tf.zeros_initializer)

What gets updated when training
happens?
Variables do.

A TensorFlow variable is the best way to represent shared,
persistent state manipulated by your program.

my_variable = tf.get_variable("my_variable", [1, 2, 3])

Variables also must be initialized. One way to do that:

my_int_variable = tf.get_variable("my_int_variable", [1, 2, 3],
 dtype=tf.int32,initializer=tf.zeros_initializer)

To use the value of a tf.Variable in a TensorFlow graph, simply
treat it like a normal tf.Tensor:
v = tf.get_variable("v", shape=(), initializer=tf.zeros_initializer())
w = v + 1 # w is a tf.Tensor which is computed based on the value of v.
 # Any time a variable is used in an expression it gets automatically
 # converted to a tf.Tensor representing its value.

Distributed TensorFlow

Single-node to Distributed Execution

- the client, which uses the Session interface to communicate
with the master,

- one or more worker processes, with each worker process
responsible for arbitrating access to one or more computational
devices (such as CPU cores or GPU cards) and for executing
graph nodes on those devices as instructed by the master.

The main components in a TensorFlow system are:

Single-node to Distributed Execution

- the client, which uses the Session interface to communicate
with the master,

- one or more worker processes, with each worker process
responsible for arbitrating access to one or more computational
devices (such as CPU cores or GPU cards) and for executing
graph nodes on those devices as instructed by the master.

The main components in a TensorFlow system are:

- local implementation is used when the client, the master, and
the worker all run on a single machine

- distributed implementation shares most of the code with the
local implementation, but extends it with support for an
environment where the client, master, and workers can all be in
different processes on different machines.

Two implementations

Single-node to Distributed Execution

Single machine vs distributed system structure:

How is it Distributed?

Model parallelism?

When the model is too big to fit into memory on one machine, one can
assign different parts of the graph to different machines. The parameters
will live on their part of the cluster, and their training and update
operations will happen locally on those nodes.

How is it Distributed?

Model parallelism?

When the model is too big to fit into memory on one machine, one can
assign different parts of the graph to different machines. The parameters
will live on their part of the cluster, and their training and update
operations will happen locally on those nodes.

Not such a great idea!

A basic way to do it is to have the first layers on a machine, the next
layers on another machine, etc.

If we do this, the deeper layers have to wait for the first layers during the
forward pass, and the first layers need to wait for the deeper layers
during the backpropagation.

You don’t get a lot of parallelism this way!

Data Parallelism is Better

Entire graph will live on one potentially replicated machine called
the parameter server.

This is good because in the case of lots of I/O, the entire graph can live
on several parameter servers to reduce the cost of I/O.

Data Parallelism is Better

Entire graph will live on one potentially replicated machine called
the parameter server.

This is good because in the case of lots of I/O, the entire graph can live
on several parameter servers to reduce the cost of I/O.

Workers:

- read different data batches

- compute gradients

- send update operations to parameter servers

Tasks like training are then executed on multiple workers.

Data Parallelism is Better

Entire graph will live on one potentially replicated machine called
the parameter server.

Synchrony vs Asynchrony

Two ways to go about reading parameters, gradient computation,
and sending updated parameters back to parameter server:

- Synchronous training: all the workers will read the parameters at
the same time, compute a training operation and wait for all the
others to be done. Then the gradients will be averaged and a single
update will be sent to the parameter server. So at any point in time,
the workers will all be aware of the same values for the graph
parameters

- Asynchronous training: the workers will read from the parameter
server(s) asynchronously, compute their training operation, and
send asynchronous updates. At any point in time, two different
workers might be aware of different values for the graph
parameters

Other Ways to Distribute…

It’s also possible to place specific operations on a particular
device, like a CPU or GPU.

with tf.device("/job:ps/task:0"):
 weights_1 = tf.Variable(!!...)
 biases_1 = tf.Variable(!!...)

with tf.device("/job:ps/task:1"):
 weights_2 = tf.Variable(!!...)
 biases_2 = tf.Variable(!!...)

with tf.device("/job:worker/task:7"):
 input, labels = !!...
 layer_1 = tf.nn.relu(tf.matmul(input, weights_1) + biases_1)
 logits = tf.nn.relu(tf.matmul(layer_1, weights_2) + biases_2)
 # !!...
 train_op = !!...

with tf.Session("grpc:!//worker7.example.com:2222") as sess:
 for _ in range(10000):
 sess.run(train_op)

Other Ways to Distribute…

It’s also possible to place specific operations on a particular
device, like a CPU or GPU.

with tf.device("/job:ps/task:0"):
 weights_1 = tf.Variable(!!...)
 biases_1 = tf.Variable(!!...)

with tf.device("/job:ps/task:1"):
 weights_2 = tf.Variable(!!...)
 biases_2 = tf.Variable(!!...)

with tf.device("/job:worker/task:7"):
 input, labels = !!...
 layer_1 = tf.nn.relu(tf.matmul(input, weights_1) + biases_1)
 logits = tf.nn.relu(tf.matmul(layer_1, weights_2) + biases_2)
 # !!...
 train_op = !!...

with tf.Session("grpc:!//worker7.example.com:2222") as sess:
 for _ in range(10000):
 sess.run(train_op)

Do this on the
parameter server

Do this on the
worker machine

